
Genomic mechanisms of fatigue in colorectal cancer survivors

David S. Black, Ph.D., M.P.H.1,2, Steve Cole, Ph.D.3, Georgia Christodoulou, M.A.1, and Jane 
C. Figueiredo, Ph.D.1,4

1Department of Preventive Medicine, Keck School of Medicine, University of Southern California

2Norris Comprehensive Cancer Center, University of Southern California

3Departments of Medicine and Psychiatry and Biobehavioral Sciences, David Geffen School of 
Medicine, University of California at Los Angeles

4Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA

Abstract

Objective—Many cancer survivors experience fatigue as a nagging symptom lasting years after 

treatment. To learn of the relevant biological pathways involved in fatigue among cancer survivors, 

we tested for an association between fatigue levels and leukocyte gene expression profiles and 

determined the specific mediating immune cell types.

Methods—A sample of N=89 Hispanic/Latino adults diagnosed with colorectal cancer aged 60.5 

years, 2.9 years since diagnosis, and 62% male provided blood for transcriptome profiling and 

completed a validated measure of fatigue (Multidimensional Fatigue Inventory-Short Form). We 

applied genome-wide transcriptional profiling of leukocyte RNA to identify gene expression 

activity associated with fatigue, tested for activity of specific transcription factors involved in 

previously established markers of inflammation and immunologic activation, and identified the 

specific cell types mediating these transcriptional alterations.

Results—In analyses adjusting for demographic and behavioral health risk factors, results linked 

fatigue to increased activation of B lymphocytes and CD8+ T cells, as well as several transcription 

factors involved in immune activation (NF-κB, STAT, and CREB). Results also replicated several 

specific genomic effects previously observed in fatigued cancer survivors, including up-regulated 

expression of alpha-synuclein (SNCA) and hemoglobin subunits (HBA and HBB).

Conclusions—Cancer survivors’ heightened fatigue levels may be partially explained by 

activation of specific immune cell subsets, providing a potential molecular biomarker for clinical 

interventions targeting the remediation of fatigue.

Correspondence to: David S. Black, Ph.D., M.P.H., 2001 N Soto Street Suite 302D, Los Angeles, CA 90032, davidbla@usc.edu. 

Conflict of interest statement: All authors declare that there are no conflicts of interest.

Author Contributions
David Black: Project conceptualization (Principal Investigator), methodology, resources, funding acquisition, lead of manuscript 
writing. Georgia Christodoulou: Data curation, manuscript writing. Steve Cole: Statistical analysis, data curation and interpretation, 
manuscript writing. Jane Figueiredo: Data collection supervision, resources, funding acquisition, and manuscript writing.

HHS Public Access
Author manuscript
Cancer. Author manuscript; available in PMC 2019 June 15.

Published in final edited form as:
Cancer. 2018 June 15; 124(12): 2637–2644. doi:10.1002/cncr.31356.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Cancer; Colorectal; Fatigue; Genomics; Hispanic; Inflammation; Leukocyte; Oncology; 
Survivorship; Transcriptome

Many cancer survivors experience fatigue as a nagging symptom lasting years after 

treatment. Fatigue is experienced as physical and/or mental tiredness to exhaustion that is 

disproportional to level of exertion.1 Cancer survivors report fatigue as the symptom most 

disruptive to daily life.2 National prevalence of fatigue is around 37% for survivors,3 and 

over 30% can experience fatigue up to 10 years after diagnosis.4 Proposed culprits include 

immune and neuroendocrine perturbations from radiation, chemotherapy, biological-agent 

treatments, and the tumor environment itself. Although our understanding of fatigue is 

limited, some promising biological mechanisms have been identified, including alteration of 

immune system activity.5,6

Immune cell signaling across inflammatory pathways offers initial insight about biological 

mechanisms of fatigue. Fatigued survivors, either proximal or distal to their treatment 

period, show elevated concentrations of pro-inflammatory markers in peripheral blood, 

compared to those not fatigued. Markers have included interleukin-1 (IL-1), tumor necrosis 

factor-alpha (TNF-α), and C-reactive protein (CRP).7,8 However, some studies do not 

replicate all signals,9 and mixed findings arise for other inflammatory markers such as 

interleukin-1β (IL-1B) and interleukin-6 (IL-6).5,10

Studies investigating gene expression in immune cells (leukocytes) have also provided 

insight into the deeper molecular drivers of fatigue. For example, fatigued breast cancer 

survivors show increased expression of genes bearing response elements for the pro-

inflammatory transcription factor, Nuclear Factor-κB (NF-κB) compared to those not 

fatigued.11 Studies have also identified specific individual target genes that are associated 

with fatigue in cancer patients, mainly in those exposed to radiation therapy. These include 

the upregulation of genes coding for alpha-synuclein (SNCA) and hemoglobin subunits (HB 
family genes).12,13 B and T lymphocytes have been implicated as cellular mediators of these 

dynamics.13–15 However, most of these findings remain provisional as they have not been 

replicated in independent samples or in different types of cancer. Moreover, it remains 

unclear how these molecular correlates relate to one another (i.e., are they different 

manifestations of a single common underlying syndrome, or do they reflect multiple distinct 

risk factors that are each sufficient to induce fatigue?).

To test the generality of previously observed molecular correlates of fatigue, we examined 

the gene expression profile of fatigue in colorectal cancer survivors. Cancer survivorship is 

defined here as the period from cancer treatment onward. We applied genome-wide 

transcriptional profiling of leukocyte RNA to identify gene transcriptional correlates of 

fatigue (controlling for relevant demographic and behavioral covariates). We used those 

transcriptome data as inputs into bioinformatic analyses of transcription factors involved in 

inflammation and immunologic activation and tested for specific cell types mediating the 

transcriptional alterations. Guided by findings from previous studies among cancer 

survivors, we hypothesized that fatigue would map on to a gene expression profile indicative 
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of greater inflammation (e.g., NF-κB activity), greater activation of stress-related 

neuroendocrine pathways (e.g., CREB/ATF factors mediating beta-adrenergic influences 

from the sympathetic nervous system, and glucocorticoid receptors mediating influences 

from the hypothalamic-pituitary-adrenal axis), and reduced activity of Type I interferon 

antiviral activity (e.g., IRF factors).

Materials and Methods

Participants and procedure

A subset of participants from the Hispanic Colorectal Cancer Study (HCCS) provided a 

blood sample and completed additional self-report measures for this study from 2015–2016. 

HCCS is a population-based cohort study of individuals self-identified as Hispanic or Latino 

with a confirmed diagnosis of colorectal cancer (CRC) at any stage.16 All men and women 

over 21 years of age with a first-time diagnosis of CRC (International Classification of 

Diseases for Oncology, Third Edition codes: C18–C20) who were able to communicate in 

English or Spanish were eligible for participation. Cases were identified from the California 

Cancer Registry and/or directly from two hospitals in Los Angeles (LAC+USC County 

Hospital and USC Norris Comprehensive Cancer Center). HCCS participants completed risk 

factor questionnaires, but only participants who agreed to provide an additional blood 

sample, which was optional, were eligible to participate in the present study. The University 

of Southern California Institutional Review Board approved this study, and all procedures 

contributing to this work complied with the ethical standards of the relevant national and 

institutional committees on human experimentation and with the Helsinki Declaration.

Assessments

Fatigue—Fatigue was assessed using the 6-item Multidimensional Fatigue Inventory-Short 

Form General Fatigue scale (MFSI-SF).17 MFSI-SF is a self-report measure of multiple 

dimensions of fatigue developed for use with cancer survivors.18 Response options range 

from 1 (not al all) to 5 (extremely) with higher scores coded to indicate a greater level of 

fatigue. Example items used in our study include “I am worn out,” “I feel fatigued,” and “I 

feel run down.” In the present study, the scale’s Cronbach’s alpha was .94. The abbreviated 

scale was used to reduce respondent burden as participants were completing lengthy 

questionnaires for the HCCS study. Gene expression analyses utilized z-score standardized 

scores on the fatigue scale to provide a metric for the identification of differentially 

expressed genes comparable to that used in previous research (i.e., ≥ 1.5-fold difference in 

average RNA expression over the 4-SD range of normal variation in scale scores).19

Demographic, biometric, and behavioral covariates—We extracted birthdate and 

sex from the questionnaires administered to patients and calculated age coincident with the 

date of blood collection. Socioeconomic assessments included highest education and annual 

household income. Body mass index (BMI) was calculated from self-reported height and 

weight (kg/m2). A dummy variable for smoking history was coded as 1 if participants 

reported ever smoking regularly. A dummy variable for alcohol history was coded as 1 if 

participants reported alcohol use during the last decade of the assessment period.
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Blood Processing and Transcriptome Profiling—A phlebotomist administered 

venipuncture to draw a fasting blood sample from participants into vacutainer tubes. 

Samples were centrifuged at 4C at approximately 1300g for 20 minutes. Buffy coat was 

extracted then stored at −80C. Samples were subsequently shipped in batch to the UCLA 

Social Genomics Core Laboratory. RNA was extracted (Qiagen RNEasy), tested for suitable 

mass (Nanodrop ND1000) and integrity (Agilent TapeStation), converted to fluorescent 

cRNA (Ambion TotalPrep), and hybridized to Illumina Human HT-12 v4 BeadArrays 

following the manufacturer’s standard protocol in the UCLA Neuroscience Genomics Core 

Laboratory. All samples were assayed in a single batch, and 88 of the 89 assayed samples 

yielded valid results according to quality assurance metrics (e.g., median probe fluorescence 

intensity >80 units).

Reference Cell Transcriptome Profiling—To facilitate identification of the specific 

leukocyte subtype(s) giving rise to fatigue-related transcriptome alterations, we isolated sets 

of major leukocyte subpopulations from anonymous donor PBMC samples and conducted 

genome-wide transcriptional profiling to identify subtype-specific gene transcripts that could 

provide reference profiles for Transcript Origin Analyses.20 Given previous data linking 

fatigue to pro-inflammatory signaling processes in myeloid-lineage immune cells,11 the cell 

isolation protocol specifically differentiated among subpopulations of monocytes and 3 

distinct dendritic cell (DC) phenotypes: CD1c+(BDCA1+) Myeloid DCs (DC1), CD303+

(BDCA2+) Plasmacytoid DCs (DC2), and CD141+(BDCA3+) Myeloid DCs (DC3).21 

Isolations were conducted using a FACS Aria III (B–D Immunocytometry) flow cytometer 

to separate 650 × 106 peripheral blood mononuclear cells (PBMC) into discrete populations 

of B lymphocytes (CD19+), CD4+ T lymphocytes (CD3+/CD4+), CD8+ T lymphocytes 

(CD3+/CD8+), Natural Killer (NK) cells (CD3−/CD14−/CD56+), monocytes (CD14+), 

DC1 (BDCA1+/CD19−), DC2 (BDCA2+), and DC3 (BDCA3+/CD14−).21 B, T, and NK 

cells were isolated from total PBMC. Monocytes and DCs were isolated from PBMC that 

had been pre-depleted of CD3+ and CD19+ cells by immunomagnetic positive selection 

(MACS microbeads; Miltenyi Biotech) in order to enhance flow cytometry positive event 

rates (i.e., reduce the length of time required to accrue a viable number of DCs, which 

generally have a prevalence < 1% of total PBMC).

All flow sorting was conducted in the UCLA Janis Giorgi Immunocytometry Core 

Laboratory and yielded cell populations that were > 99% pure. Sorts were conducted on 4 

independent PBMC samples (each isolated from Red Cross Leukopak buffy coat specimens 

by standard ficol density gradient centrifugation), with 2 samples pooled to create 2 

biological replicate samples of each cell type for subsequent transcriptome profiling. 

Transcriptome profiling was conducted in a single batch as described above using Illumina 

Human HT-12 v4 BeadArrays. All samples yielded valid data, and data are publicly 

available as Gene Expression Omnibus GSE101489.

Statistical Analyses

Gene expression values were quantile-normalized,22 and then log2-transformed for analysis 

using standard linear statistical models to estimate the association of transcript abundance 

with (z-score transformed) MFSI-SF scores while controlling for age, sex, BMI, history of 
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smoking (1/0), and history of alcohol consumption (1/0). Differentially expressed genes 

were identified as those showing ≥ 1.5-fold difference in expression over the 4-SD range of 

normal variation in MFSI-SF scores.

A 2-sample variant of the Transcription Element Listening System (TELiS23) was applied to 

the sets of up- and down-regulated genes to test whether the observed differences in gene 

expression could be driven by specific a priori-hypothesized transcription factors involved in 

inflammation and immunologic activation (NF-κB, AP-1, CREB/ATF, GR, IRF, and STAT). 

These analyses tested the (log) ratio of transcription factor-binding motif prevalence for each 

factor in up- vs. down-regulated promoters, pooled across 9 alternative technical 

specifications involving parametric variations of promoter length (−300 bp, −600 bp, −1000 

to +200 bp relative to the transcription start site) and TFBM detection stringency (MatSim .

80, .90, .95).23

To identify specific cell types that contributed to the empirically observed differences in 

gene expression, we applied Transcript Origin Analysis (TOA)20 to separate lists of up- and 

down-regulated genes. TOA tested for significant over-representation of genes 

preponderantly expressed by a specific subset of PBMCs (i.e., monocytes, dendritic cells, 

CD4+ T cells, CD8+ T cells, B cells, or Natural Killer cells) using cell-specific reference 

transcriptomes derived by flow cytometric isolation as described above. We also tested 

whether MFSI-SF scores were associated with average expression of 19 gene transcripts 

previously utilized as a generalized index of pro-inflammatory gene expression (IL1A, 

IL1B, IL6, IL8, TNF, PTGS1, PTGS2, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, JUND, 

NFKB1, NFKB2, REL, RELA, RELB) or 34 gene transcripts previously utilized as a 

generalized index of Type I interferon activity (GBP1, IFI16, IFI27, IFI27L1-2, IFI30, 

IFI35, IFI44, IFI44L, IFI6, IFIH1, IFIT1-3, IFIT5, IFIT1L, IFITM1-3, IFITM4P, IFITM5, 

IFNB1, IRF2, IRF7-8, MX1-2, OAS1-3, OASL) and antibody synthesis (IGJ, IGLL1, 

IGLL3), as previously detailed.19 In all analyses, standard errors for observed bioinformatic 

statistics were derived from 200 cycles of bootstrap resampling of linear model residual 

vectors, while accounting for potential correlation among residuals across transcripts.

Results

Sample Characteristics

The sample comprised 89 colorectal cancer survivors with an average age of 60.5 years, 

majority male, moderately overweight BMI, and 2.9 years since diagnosis (Table 1). Over 

half the sample had a history of smoking regularly. Average MFSI-SF scores (M=7.4, 

SD=6.3) were similar to previous levels found among survivor samples (range=5–12)24 and 

for population-based norms (M=8.4, SD=3.6)25 but lower than advanced-stage cancer 

patient samples (range=13–19).26 18% of our sample showed MFSI-SF global scores >12 

which is the national norm for chronically unhealthy individuals.25

Gene Expression Correlates of Fatigue

Analyses estimating the magnitude of association between leukocyte gene expression and 

MFSI-SF scores identified 280 gene transcripts showing ≥ 1.5-fold difference in expression 
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over the 4-SD range of normal variation in MFSI-SF scores after controlling for age, sex, 

BMI, smoking, and alcohol use (155 up-regulated and 120 down-regulated). Up-regulated 

genes (Supplemental Table 1) included several transcripts associated with fatigue, such as 

the amyloid subunit synuclein-α (SNCA) and multiple hemoglobin subunits (HBA1, HBA2, 

HBB, HBG2).12–15 Other up-regulated transcripts included indicators of immunologic 

activation (HLA-B, HLA-H, LTB) and related transcriptional regulators (EGR1, ETS1, 

ATF4, HMGB1, HMGB2, JUND, KLF2, EIF1), as well as several small nucleolar RNAs 

(SNORA45, SNORA63, SNORD3A, SNORD3C, SNORD3D, SNORD13, SNORD89). 

Down-regulated genes were difficult to characterize due to the preponderance of 

unannotated/un-named transcripts (LOC/HS./ORF) but included the lymphocyte 

differentiation marker LY6E, several keratin-associated proteins and cadherins (KRTAP6-3, 

KRTAP19-6, KRTAP21-1, KRTAP21-2, CHD5), and indicators of Type I interferon activity 

(ISG15, IFI6).

To identity the specific cell types mediating fatigue-related transcriptional alterations within 

the overall leukocyte pool, we conducted Transcript Origin Analysis (TOA) using reference 

cell transcriptome profiles derived from immunomagnetically isolated leukocyte subsets 

(CD4+ T cells, CD8+ T cells, B cells, NK cells, monocytes, and DC1, DC2, and DC3 

dendritic cells). Results identified B lymphocytes, CD8+ T lymphocytes, and to a lesser 

extent, CD4+ T lymphocytes as the primary cellular origins of gene transcripts up-regulated 

in association with MFSI-SF scores (Figure 1a). No individual cell type emerged as a 

preponderant contributor of gene transcripts that were down-regulated in fatigue.

To identify specific transcription control pathways that might mediate the observed 

differences in gene expression, we conducted Transcription Element Listening System 

(TELiS) analyses comparing the prevalence of transcription factor-binding motifs in the 

promoters of genes that were up- vs. down-regulated in association with MFSI-SF scores. 

Results indicated up-regulation of NF-κB, CREB/ATF, and STAT family factors, down-

regulated activity of IRF factors, and no indication of differential activity for AP-1 or GR 

(Figure 1b).

Previous studies have linked cancer-related fatigue to increased pro-inflammatory signaling,
11 so we also tested whether MFSI-SF scores might be associated with increased expression 

of a previously defined set of 19 cardinal pro-inflammatory gene transcripts. Results showed 

a positive association at the trend level (p = .095; Figure 1c). Although not hypothesized a 
priori, we also tested a previously defined gene set tracking Type I interferon antiviral 

activity and antibody-related transcription (which is often found to track inversely with pro-

inflammatory gene expression27) and did not find a significant association with MFSI-SF 

scores in this sample.

Discussion

Based on the study results, we find that heightened levels of fatigue among colorectal cancer 

survivors are associated with up-regulated activity in the adaptive immune system, including 

increased activation of B lymphocytes and CD8+ T lymphocytes, elevated activity of 

transcription factors involved in lymphocyte activation and inflammation (NF-κB, STAT, 
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and CREB/ATF), and reduced activity of interferon response factors (IRF). At the level of 

individual gene transcripts, these alterations included up-regulation of α-synuclein (SNCA) 

and hemoglobin subunits (HBA and HBB), which corroborates results previously observed 

in cancer-related fatigue.12,13 Our study is the first to replicate previous exploratory findings 

as a priori hypotheses, the first to document correlates of fatigue in colorectal cancer, and the 

first to extend such results in a Hispanic/Latino sample, lending to enhanced generalizability 

of the findings across race/ethnicity. Moreover, the simultaneous documentation of 

transcriptional alterations at the level of specific individual genes (e.g., SNCA, HBA/HBB), 

up-stream transcription factors (e.g., NF-κB, STAT, CREB/ATF, IRF), and their broader 

cellular context (e.g., B lymphocytes, CD8+ T cells) suggests that each of these processes 

may reflect different manifestations of a single common underlying syndrome involving 

dysregulation of the adaptive immune response.

The present results are particularly striking in replicating associations of several specific 

transcripts with cancer-related fatigue, including the amyloid subcomponent synuclein-α 
(SNCA) and several hemoglobin subunits (HBA1, HBA2, HBB, HBG2).12,13,15 The present 

findings also converge to some degree with previous observations relating cancer-associated 

fatigue to increased activity of pro-inflammatory signaling pathways (e.g., activation of NF-

κB, CREB/ATF, and STAT family TFs, as well as a trend toward increased activity of the a 

priori-specified composite of 19 canonical pro-inflammatory gene transcripts). However, the 

present data showed no evidence of altered activity of the anti-inflammatory glucocorticoid 

signaling pathway (GR) or of the monocyte lineage cell types that mediate classical 

inflammatory reactions. Instead, the present results implicated lymphoid lineage cells, 

particularly B lymphocytes and CD8+ T lymphocytes. Previous studies have also implicated 

B cells in the leukocyte transcriptomic correlates of fatigue.14,15 Consistent with that 

observation, SNCA is known to influence B cell homeostasis and differentiation in addition 

to its better known role in neuronal integrity as the non-Aβ component of Alzheimer’s 

Disease amyloid.28

Past research assessing inflammatory markers using genome-wide transcription profiling 

have focused on breast cancer patients, and these studies have demonstrated variability in 

methodology, particularly fatigue measures and sampling techniques. 5,6,29 The 

discontinuity of the present results with the more classical myeloid/inflammatory profile 

observed in previous studies of post-treatment fatigue in breast cancer11 may represent 

distinct pathophysiological pathways in distinct cancer types (i.e., colorectal cancer in this 

study vs. breast cancer in the previous study) and/or differences in the time elapsed after 

radiation and other cancer treatments. In particular, colorectal cancer may involve more 

extensive surgery and more extended radiation and chemotherapy exposures, and those 

differences may contribute to differences in the immunoregulatory gene expression profiles 

observed in this study relative to previous studies of early stage breast cancer patients. 

Additionally, racial and ethnic differences in the experience of cancer survivorship, 

including higher reported obesity rates (defined by the CDC as an adult BMI>30.0), may 

affect the relevant biological pathways and associated gene expression profiles involved in 

fatigue among Hispanic/Latino CRC survivors.30,31 More studies on racial and ethnically 

diverse cancer survivors with a variety of cancer diagnoses are needed to elucidate the 

possible influence of these factors on symptoms post-treatment. 31
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The present results also differ from previous observations in linking cancer-related fatigue to 

reductions in Type I interferon-related signaling, including down-regulation of specific 

interferon response genes (e.g., ISG15, IFI6) as well as reduced activity of IRF transcription 

factors. However, we observed no significant down-regulation of a broader set of 34 pre-

specified interferon and antibody-related genes, suggesting that the observed down-

regulation is specific to a narrow range of interferon-related transcripts. The biological 

significance of this observation remains to be clarified in future research, but it could 

represent a compensatory side-effect of the observed increases in NF-κB signaling activity 

(as NF-κB is known to reciprocally cross-regulate IRF activity).32,33 Alternatively, this 

observation may reflect a selective deficit in Type I interferon containment of a chronic viral 

infection that subsequently contributes to fatigue (e.g., as hypothesized in chronic fatigue 

syndromes). Future research assessing the role of subclinical viral infections such as 

Epstein-Barr Virus or Cytomegalovirus may help clarify the basis for these observations.

Study Limitations

One limitation involves the cross-sectional study design, which precludes drawing any 

conclusions regarding the direction of causal relationships among gene expression activity 

and fatigue. The observed associations may reflect a causal effect of immunologic activation 

on CNS processes involved in arousal and motivation (e.g., as in the “sickness behavior” 

literature).4,34,35 However, the profile of transcription factor alterations observed here 

(elevated pro-inflammatory and reduced antiviral) is reminiscent of the stress-induced 

“Conserved Transcriptional Response to Adversity” profile,27 suggesting that at least some 

of the observed transcriptomic correlates of fatigue could potentially reflect the effects of 

fatigue-related distress on immune cell gene regulation. Associations may also reflect the 

effects of stressful life circumstances that causally influence both experienced fatigue and 

immune cell gene expression. It is also important to note that no assessments of clinical 

health outcomes or immune function are available in this sample, so the implications of the 

observed transcriptome differences for health remain to be determined in future studies.

Clinical Implications

The present findings identify a systematic alteration in lymphocyte gene regulation that may 

serve as a target for future interventions to reduce cancer-associated fatigue. Based on these 

findings, therapeutic strategies the reduce CD8+ T cell and/or B cell activation should be 

considered for potential use in cases of severe or persistent cancer-related fatigue (e.g., 

monoclonal antibodies targeting cell type-specific activation receptors). Moreover, the RNA-

based measures of CD8+ T cell and B cell activation, activation-related transcription factor 

activity (e.g., NF-κB, STAT, CREB), and specific replicated transcript alterations (SNCA, 
HBA, HBB) identified in this report may potentially be used as biomarkers to gauge the 

impact of pharmacologic or behavioral interventions to reduce fatigue.36 The establishment 

of replicated molecular biomarkers thus opens new horizons for the clinical management of 

cancer-related fatigue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gene expression, cellular origin, and transcriptome representation of fatigue scores 
(MFSI-SF)
(A) Transcript Origin Analyses (TOA) identifying major cell types mediating fatigue-related 

transcriptional alterations within the overall leukocyte pool that show ≥1.5-fold difference in 

expression over the 4-SD range of normal variation in fatigue scores after controlling for 

age, sex, BMI, smoking, and alcohol use (280 up-regulated gene transcripts with 155 up-

regulated and 120 down-regulated listed in Table S1). (B) Transcription Element Listening 

System (TELiS) analyses comparing the prevalence of transcription factor-binding motifs in 

the promoters of genes that were up- vs. down-regulated in association with fatigue scores. 

(C) Comparing the expression of previously defined gene sets comprising 19 cardinal 

inflammatory and antiviral+antibody gene transcripts. TFBM=Transcriptional factor-binding 

motif.
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Table 1

Hispanic/Latino cancer survivor sample characteristics, N=89

Variable M (SD) or %

Age in years 60.5 (10.3)

Sex (male) 62%

Education

 <High school graduate 41.6%

 High school graduate 25.8%

 Some college 27.0%

 Bachelor degree or above 5.6%

Household income

 $29,000 USD or less 58.7%

 >$29,000 USD 44.3%

Years since dx 2.9 (1.7)

Alcohol use history (yes) 36.0%

Smoking history (yes) 52.0%

Body Mass Index (BMI) 30.5 (7.1)

Fatigue (MFSI-SF) 7.4 (6.3)

Notes. MFSI-SF: Multidimensional Fatigue Symptom Inventory-Short Form presented as a sum score of 6 items for a possible range from 0 to 24.
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